大家好,今天小编关注到一个比较有意思的话题,就是关于python的深度学习的问题,于是小编就整理了4个相关介绍Python的深度学习的解答,让我们一起看看吧。
- python深度学习(图像识别)的学习方法或者入门书籍有什么?
- 学好深度学习,Python得达到什么程度?
- 人工智能方向需要学习python还是深度学习呢?
- 笔记本电脑预算10000左右,有什么推荐?计算机专业,主要使用python,java未来发展方向是深度学习?
python深度学习(图像识别)的学习方法或者入门书籍有什么?
2000年以来,人工智能的研究、产品开发和创业项目如雨后春笋般出现,各大互联网公司和研究机构纷纷摩拳擦掌,希望在这个新领域领先,也吸引了越来越多的人进入人工智能行业。
我们发现,转行AI的人里主要有三类,一类是程序员出身,具有很好的工程经验,一类是统计学数学电子通信类出身,具有较为扎实的理论基础,还有一类既没有丰富的编程经验也没有扎实理论基础。
对于零基础小白,怎样快速入门深度学习呢?在这里精选了 5 本深度学习相关的书籍,帮助小白更好的入门。
1.《深度学习》(Deep Learning)
出自 Goodfellow、Bengio 和 Courville 三位大牛之手的《深度学习》(Deep Learning)不可不提。本书旨在成为一本教科书,用于在大学课堂上教授关于深度学习的基本原理和理论。Goodfellow 等人的《深度学习》完全是理论性的书籍,而且没有代码,是深度学习人员必看书籍。
2.《深度学习图解》
探索深度学习教会你从头开始建立深度学习神经网络。经验丰富的深度学习专家 Andrew W. Trask 将向你展示了深度学习背后的科学,所以你可以自己摸索并训练神经网络的每一个细节。只使用 Python 及其数学支持库 Numpy,就可以训练自己的神经网络,将文本翻译成不同的语言,甚至像莎士比亚一样写作。
3.《Python 深度学习》
本书介绍了使用 Python 语言和强大的 Keras 库进行深入学习。这本书由 Keras 的创建者、谷歌人工智能研究员 Francois Chollet 撰写,通过直观的解释和实际的例子来巩固你的理解。你将在计算机视觉、自然语言处理和生成模型中探索具有挑战性的概念和实践。当你完成的时候,你将拥有知识和实际操作技能来将深度学习应用到你自己的项目中。
4.《神经网络和深度学习》
我也和你一样在进行python的深度学习,每天能学点,弄明白个小问题,我就知足。你想学的图像,应该和一个python的第三方库叫OPEN-cv有很大关系,可以网上找***来学习,都是成年人了,我不建议花钱报课来学习,估计网上的培训机构会骂我,我只想说,每个人都有自学能力,甭管你是去图书馆(免费),还是上网找免费网课,我提倡不花钱学技术,哪怕慢一些,学知识我感觉还是慢点,脚踏实地好一些,我们要的就是实惠,因为我也曾经花钱学过,学完后的感觉不值,自己的感觉,仅供参考,如果不想患得患失,就自力更生,自己解决学习困难。
最后把网上一段录制屏幕的源代码分享给你,我还在努力去测试成功。
祝你提前给它先搞明白,测试成功。
学好深度学习,Python得达到什么程度?
大概分为几个境界,这么和你说吧,得看你说的学好是好到什么程度
1.好到会调包,那你就需要把python用到能看懂函数包参数的程度
2.好到会对函数包进行调整,那就需要能看懂函数包里各个函数功能的程度
3.好到能在实际项目中通过机器学习算法[_a***_]问题,那就需要不仅可以较为深入的理解python源码还需要掌握项目部分的一些代码,甚至掌握不同语言之间嵌入的程度
4.好到完全理解算法底层原理可以研究并创新算法的时候,那就需要能够熟练使用python到能够从最底层方法搭建自己的函数,类,包的程度。甚至需要考虑到训练过程中计算***的分配,并行等问题尽可能提升训练效率。(当然现在已经成熟的框架已经让这个底层变得非常不那么底层了)
5.好到有资格成为知名科学家,那你把python学成啥样都完全无所谓。只要你提出一个idea,会有一大群非常优秀经验丰富的软件工程师去抢着帮你实现
总结,python只是一种工具,如果你真的想学好机器学习或者任何算法类的东西就一定要让你的能力是基于你自身的知识体系和思维创新的,因为任何基于某语言甚至某一个框架的能力都非常有可能在一夜之间变成过往云烟
与之相反的是如果你是一位非常优秀的算法研究者,哪怕你只是有完全面向百度的编程水平也完全可以有很高的个人价值。
人工智能很多技术已经应用于日常生活,比如我们浏览网上商城时,经常会出现商品推荐的信息,这是商城根据用户信息和习惯进行的智能推荐,用到了数据挖掘、机器学习、自然语言处理等技术。
中公教育联合中科院专家推出AI深度学习课程,技术紧跟市场需求,落地领域宽泛,不限于语音识别、图像识别、机器对话等前沿技术 ,涵盖行业内75%技术要点,满足各类就业需求,有兴趣可以关注一下。
人工智能方向需要学习python还是深度学习呢?
这两个都需要学习,Python作为人工智能首选的语言来说,他的简单易学好上手是作为人工智能开发工具的首选,而深度学习的出现是机器学习的突破。成功的从人工到智能,所以要是想不如人工智能领域还是需要两者都去学习
目前中科院叶佩军老师出了一个深度学习的课程,包含Python+深度学习,有兴趣可以看一下
有一定的事实证明,Python语言更适合初学者,大致分为五个阶段的学习。Python语言并不会让初学者感到晦涩,它突破了传统程序语言入门困难的语法屏障,初学者在学习Python的同时,还能够锻炼自己的逻辑思维,同时Python也是入门人工智能的首选语言。
学习编程并非那么容易,有的人可能看完了Python语法觉得特别简单,但再往后看就懵了,因为到后期发现并不能学以致用,理论结合项目才是学好一门编程语言的关键。可以选择报班入门,一般在2W左右,根据自己的实际需要到“U”就业实地了解,可以先在试听之后,再选择适合自己的。
笔记本电脑预算10000左右,有什么推荐?计算机专业,主要使用python,java未来发展方向是深度学习?
你这种情况吧...
直接买13寸的苹果本就行...
记着不能买15寸以及15寸以上的....
钱不够可以买二手...
..
原因如下:
1.苹果本不能玩游戏.这是秒杀一切windows本的地方.你目前自制力还不行.买Windows本你控制不住的...
2.万一控制不住了.想买Windows本.苹果本很保值.卖了再买就是了...
3.直接买神舟战神吧.玩游戏老爽了...别坚持了...什么年龄干什么事...
...
如果需要好一点的GPU来运行深度学习程序的话,一万的预算我只知道有小米的游戏本,一万预算绰绰有余。Nvidia的1060显卡,6G显存,现在不知道有没有升级到20系列。
作为深度学习的研究者,可以负责任的告诉你,如果你要进行深度学习方向研究,macBook pro不适合,因为cuda核心不支持,也就是说无法用GPU加速神经网络的学习过程。但是,是的有但是!Macbook Pro的mac OS系统又是对程序员最友好的操作系统,系统预装了PYTHON,有最好用的vim等,所以如果你不需求快速的GPU训练,那是值得推荐的。
其次,我要说,如果兼机器学习和编程友好度的画可以买个带较大独立显存(GPU)的笔记本电脑,装上Ubantu系统就可以了。
windows系统不适合编程。
到此,以上就是小编对于python的深度学习的问题就介绍到这了,希望介绍关于python的深度学习的4点解答对大家有用。