大家好,今天小编关注到一个比较有意思的话题,就是关于python教程机器学习的问题,于是小编就整理了4个相关介绍Python教程机器学习的解答,让我们一起看看吧。
- 如何学习作为机器学习基础的Python语言?
- python做机器学习的话有哪些推荐的书跟课程?
- spark机器学习和python机器学习的区别是什么?
- pythonweb开发是学点golang好还是学数据分析、机器学习好?
如何学习作为机器学习基础的Python语言?
第一个阶段,是掌握Python 基础技能。这可以按照一些教程和书籍来进行,比方说《笨方法学Pyhon》、廖雪峰的Python教程、《Python cookbook》等等。这一阶段的重点是多看多写代码,只有多看多写才能尽快熟悉。在这个阶段,还要熟悉一些常用的库,例如Numpy、pandas、matplotlib等等。这些可以按照文档或者在github上找到现成的文档和代码来学习。
第二个阶段,了解一些机器学习的基本内容。可以看MOOC,也可以买些相关书籍。吴恩达的机器学习教程很受欢迎,网上能找到视频和笔记。
然后进入第三个阶段,把Python和机器学习结合在一起。可以自己尝试实现一些机器学习工具,例如k-均值聚类、决策树、线性回归、逻辑回归、支持向量机之类,要是自己实现不了也没有关系,毕竟github上有大量的代码可以参考学习。
别相信那些一上来给你十来本几百页书或者资料的人!学python,十步!一,安装python3!二,Google查一下基本语法!三,Google一段简单的python代码跑一下,修改代码去理解基本语法!四,自己找一项目写代码,实战出高手!五,写代码!六,写代码!七,写代码!八,写代码!九,Google python的面向对象!十,GitHub上开一个自己的项目!
python做机器学习的话有哪些推荐的书跟课程?
机器学习:
1.理论研究和推导可以看周志华老师的《机器学习》,也称为西瓜书,里面讲了各种算法的推导,比如线性回归,k值最近邻,支撑向量机等可解释模型,缺少神经网络的具体讲解。(还有一点就是其中不涉及到代码)
2.被奉为神作的是一本名为《Hands-On Machine Learning with Scikit-Learn,Keras&TensorFlow》,这本书把机器学习的讲解和代码结合在一块,从线性回归到支撑向量机再到深度学习都有设计(但以机器学习为主)
3.《机器学习实战》,真本书是一本比较经典的书,书比较老了,但是讲的挺好,这本书主要偏重代码,没有涉及到深度学习
深度学习:
1.理论研究的话可以参考花书《深度学习》,这本书纯粹讲理论推导,不涉及代码,是一本比较经典的书
2.《TensorFlow深度学习》,这本书Github上有免费的电子版,把深度学习的TF2.0相结合,俗称龙书,应该是TF书里面比较好的了
3.《动手学深度学习》pytorch版,这本书是把深度学习和Pytorch相结合,是Pytorch里面比较好的书籍了
课程的话:入门机器学习可以看吴恩达的课,主要是我一般喜欢看书自己学[捂脸][捂脸][捂脸]
spark机器学习和python机器学习的区别是什么?
spark是一个框架,python是一种语言,spark可以由python编写,python可以在spark下运行。原理上都是一样的,机器学习的原理都是数学上的东西。两者的区别只是语法上的不同,spark比较适合处理海量数据,但是不代表python不可以,而且python引入spark架构,既可以充分利用spark的分布式优势,也可以利用python灵活方便的优势。用的话选一个用就好了,没有一定的谁好谁坏。
pythonweb开发是学点golang好还是学数据分析、机器学习好?
对于Python程序员来说,选择数据分析和机器学习在知识体系上是具有一定连贯性的,目前数据分析和机器学习的发展速度比较快,也是比较热门的方向之一,所以建议重点考虑一下。
Go语言是最近几年发展比较快的编程语言,Go语言主要解决的是性能问题,尤其是在多处理器的[_a***_]***情况下来处理大用户并发的方案上,具有设计上的优势。但是目前Go语言的应用情况还处在落地阶段,建议先观察一段时间再考虑,这样在学习上会有更丰富的案例可以参考,相应的问题也会有更多的处理方案。
相对于Go语言来说,***用Python做数据分析和机器学习方面的开发则要成熟许多。使用Python做相关开发需要学习几个常见的库,包括Numpy、Matplotlib、Scipy等,这些库对于Python做数据分析来说还是非常重要的,使用起来也比较方便。
这些库各有特点,Numpy提供了很多关于矩阵的基础操作,Matplotlib则提供了方便的绘制图像的方式,Scipy则提供了像积分、优化、统计等科学计算的工具,熟悉这些库的使用需要进行大量的实验。
目前通过机器学习的方式来进行数据分析是一个比较常见的选择,机器学习涉及到数据、算法、实现和验证几个关键环节,所以对于Python Web程序员来说,需要掌握比较常见的机器学习算法,并通过Python语言予以实现。这部分知识的学习还是有一定难度的,建议一边学习一遍实验,这样会在较短的时间内完成机器学习的入门,然后再通过几个综合性的案例来深入学习机器学习的相关知识。
我使用Python做机器学习已经有较长时间了,目前也在使用Python开发一个智能诊疗系统,我会陆续在头条写一些关于Python开发方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有大数据、机器学习方面的问题,也可以咨询我,谢谢!
到此,以上就是小编对于python教程机器学习的问题就介绍到这了,希望介绍关于python教程机器学习的4点解答对大家有用。